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Abstract—The advancement of audio-language (AL) multi-
modal learning tasks has been significant in recent years, yet the
limited size of existing audio-language datasets poses challenges
for researchers due to the costly and time-consuming collec-
tion process. To address this data scarcity issue, we introduce
WavCaps, the first large-scale weakly-labelled audio captioning
dataset, comprising approximately 400k audio clips with paired
captions. We sourced audio clips and their raw descriptions from
web sources and a sound event detection dataset. However, the
online-harvested raw descriptions are highly noisy and unsuitable
for direct use in tasks such as automated audio captioning. To
overcome this issue, we propose a three-stage processing pipeline
for filtering noisy data and generating high-quality captions,
where ChatGPT, a large language model, is leveraged to filter and
transform raw descriptions automatically. We conduct a compre-
hensive analysis of the characteristics of WavCaps dataset and
evaluate it on multiple downstream audio-language multimodal
learning tasks. The systems trained on WavCaps outperform
previous state-of-the-art (SOTA) models by a significant margin.
Our aspiration is for the WavCaps dataset we have proposed to
facilitate research in audio-language multimodal learning and
demonstrate the potential of utilizing large language models
(LLMs) to enhance academic research. Our dataset and codes
are available at https://github.com/XinhaoMei/WavCaps.

Index Terms—Audio-language dataset, multimodal learning,
ChatGPT, deep learning.

I. INTRODUCTION

OVER the past decade, the field of machine listening has
achieved notable progress, with the aid of deep learning

techniques and the availability of audio event datasets [1]–[3].
This has resulted in the development of algorithms that can
detect and identify sound events and acoustic scenes [4]–[7].
More recently, there has been a surge of interest in establishing
a more profound comprehension of audio content by connect-
ing audio and language. A number of audio-language (AL)
multimodal learning tasks have been introduced, such as text-
to-audio retrieval [8]–[10], automated audio captioning [11]–
[13], audio question answering [14], [15], text-based sound

X. Mei, H. Liu, M. D. Plumbley, and W. Wang are with the Centre for
Vision, Speech, and Signal Processing, University of Surrey, Guildford, GU2
7XH, U.K. (E-mail: [x.mei, haohe.liu, m.plumbley, w.wang]@surrey.ac.uk)

C. Meng is with Johns Hopkins University, U.S.A. (E-mail:
cmeng9@jhu.edu)

Q. Kong is with The Chinese University of Hong Kong, Hong Kong, China.
(E-mail: qqkong@ee.cuhk.edu.hk)

T. Ko, and C. Zhao are with ByteDance, China. (E-mail: [tom.ko,
zhaochengqi.d]@bytedance.com)

Y. Zou is with the School of Electronic and Computer Engineering, Peking
University, Shenzhen Graduate School, Shenzhen, 518055, China. (E-mail:
zouyx@pku.edu.cn)

generation [16]–[19], and text-based sound separation [20].
Research on AL takes a stride in the direction of empowering
machines to comprehend audio signals at a human-like level.

While AL research is relatively young, vision-language
(VL) multimodal learning [21], the counterpart of AL mul-
timodal learning, has been studied for decades and has con-
tributed to the success of many vision-language applications,
such as cross-modal search [22], image and video captioning
[23], [24], text-to-image generation [25], [26], and visual
question answering [27], [28]. Two main factors have con-
tributed to the significant progress in VL tasks. First, ad-
vances in model architectures, especially self-attention-based
Transformer models [29], have shown superior performance
compared to convolutional neural networks (CNNs) [30] and
recurrent neural networks (RNNs) [31], both in computer
vision and natural language processing tasks. Second, large-
scale VL multimodal pretraining enables models to learn
transferable and robust multimodal representations that ben-
efit VL downstream tasks [24], [32], [33]. Pre-training on
large-scale (even weakly-labelled) datasets and fine-tuning on
specific datasets for downstream tasks has been a prevalent
methodology in VL multimodal learning tasks [34], [35].

Inspired by the progress made in the domains of vision and
language, Transformer-based models and training strategies
have been successfully adapted in modeling audio signals [36].
This has led to substantial improvements in the recognition and
detection of sound events. However, the scale of audio-related
datasets is still limited, which severely hinders the research
in AL multimodal learning. Till now, the largest audio event
dataset, AudioSet [1], has about 2M audio clips, and the largest
audio captioning dataset, AudioCaps [37], contains only about
50k audio clips. Both of them are orders of magnitude smaller
than their counterparts in the vision domain such as ImageNet
[38], and MS COCO [39]. The reasons for this are twofold:
First, the research within the audio community has received
less attention, as compared to the vision community. Second,
the collection of audio datasets is a more laborious, costly, and
time-consuming process compared to that of visual datasets.

To alleviate the data scarcity problem and advance AL
research, we gathered audio clips and their corresponding raw
descriptions from multiple sources, drawing inspiration from
the collection process of the Conceptual Captions datasets
[40], [41]. Our collection encompasses data from three web
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platforms—FreeSound1, BBC Sound Effects2, and Sound-
Bible3—as well as from an audio tagging dataset, AudioSet.
These comprehensive and varied sources are instrumental to
enriching the depth and breadth of our dataset. Nevertheless,
the harvested raw descriptions may range from complete
sentences to fragmented phrases, lists of keywords or tags,
and exhibit a high degree of noise. For instance, some de-
scriptions do not represent the audio content at all, and certain
descriptions contain extraneous information unrelated to the
audio, such as recording devices, time, and locations. As a
result, these unrefined raw descriptions hinder the learning
of robust audio-language representations and are ill-suited for
direct application in tasks like automated audio captioning.
To process harvested data, Conceptual Captions 3M (CC3M)
[40] applied a series of complex rules to filter and trans-
form candidate image-caption pairs and it only keeps around
0.2% of originally harvested data. When compared to image-
description pairs, the limited number of audio-description pairs
available on the web makes it impractical to accept such a high
rate of discarding.

To overcome this problem, we propose a three-stage pro-
cessing pipeline for filtering noisy data and generating high-
quality captions. In a pioneering move, we utilize ChatGPT4,
a robust large language model to automate the process, ensur-
ing both efficiency and effectiveness. Initially, a pre-filtering
stage is implemented to exclude irrelevant data based on
text frequency. Subsequently, ChatGPT is employed to further
process the obtained raw descriptions. This involves content-
based filtering and transforming the raw descriptions into
sentences resembling captions. Lastly, we refine undesirable
outputs from the second stage in a post-processing stage.
Ultimately, we present the first large-scale, weakly-labelled
audio captioning dataset, WavCaps, which contains about 400k
audio clips with paired captions.

We classify WavCaps as a weakly-labeled dataset for the
following reasons. The term “weakly-labeled dataset” is de-
rived from the domain of weak supervision or weakly super-
vised learning [42]. This area of study addresses situations
where the supervision signal provided for model training is
imperfect [42], [43], covering the scenarios such as incomplete
supervision, where only a portion of the training data has
labels; inexact supervision, where the labels used are not
as granular as the task demands; and inaccurate supervision,
where the labels are tainted with noise or errors. In WavCaps,
captions are derived by filtering and transforming harvested
raw descriptions using ChatGPT. They may be incomplete if
specific sound events are absent from the raw descriptions
or incorrect if the descriptions themselves are erroneous,
thus exemplifying the characteristics of inexact and inaccurate
supervision in weakly supervised learning.

In comparison to existing audio captioning datasets [37],
[44], [45], WavCaps is not only an order of magnitude larger,
but also encompasses a wider range of content. We conducted
experiments on multiple audio-language multimodal learning

1https://freesound.org/
2https://sound-effects.bbcrewind.co.uk/
3https://soundbible.com/
4https://openai.com/blog/chatgpt/

tasks to evaluate the impact of the proposed WavCaps dataset
and achieved new state-of-the-art results on most tasks, sur-
passing previous benchmarks by significant margins.

In summary, our work offers three main contributions: (1)
the introduction of a large-scale, weakly-labeled audio caption-
ing dataset, WavCaps, for audio-language multimodal learning
tasks; (2) the use of ChatGPT to automatically filter and
rewrite harvested raw descriptions into caption-like sentences,
showcasing its powerful data augmentation capabilities; and
(3) extensive experiments conducted on downstream tasks,
demonstrating the effectiveness of our proposed WavCaps
dataset. Our expectation is that WavCaps will aid in advancing
research in audio-language multimodal learning and also serve
as a demonstration of how ChatGPT can be utilized to enrich
academic research.

The remainder of this paper is organized as follows. Sec-
tion II introduces related works in vision-language and audio-
language areas. Details of the dataset collection and processing
steps are described in Section III. Section IV introduces
experiments on audio-language multimodal tasks and present
the results and analysis. Finally, we conclude this work in
SectionV.

II. RELATED WORKS

A. Vision-Language Datasets

In recent years, significant progress has been made in VL
learning thanks to the release of large-scale VL datasets.
The images or videos in these datasets are typically sourced
from online platforms. Based on the annotation methods
employed, VL datasets can be classified into two categories:
automatically-annotated and human-annotated. Automatically-
annotated datasets, such as CC3M [40], Conceptual Captions
12M (CC12M) [41], and ALIGN [34], have millions of image-
caption pairs, where image-description pairs are first harvested
from the web and processed automatically according to a series
of predefined rules, without human intervention. These large-
scale datasets are usually used as pre-training datasets to learn
multimodal representations for downstream tasks. In contrast,
human-annotated datasets, such as COCO Captions [39], NO-
Caps [46], and Flickr [47], employ humans to annotate images
or videos. The annotation process is expensive and time-
consuming. Therefore, human-annotated datasets are limited
in size and are generally used as fine-tuning datasets for
performance evaluation. In summary, automatically-annotated
datasets are larger but often noisy, while human-annotated
datasets are smaller but of better quality. Pre-training on large-
scale (even noisy) datasets and fine-tuning on small task-
specific datasets has been a prevalent methodology in VL
multimodal learning [32]–[34].

Similar to automatically-annotated VL datasets [34], [40],
[41], we also harvest audio-description pairs from the web,
and design a pipeline to process data automatically. However,
taking into account the differences in quantity and data charac-
teristics, we did not use complex pre-defined rules as in CC3M
[40] to process the harvested data, but employed ChatGPT to
filter and rewrite raw descriptions into sentence-like captions.

https://freesound.org/
https://sound-effects.bbcrewind.co.uk/
https://soundbible.com/
https://openai.com/blog/chatgpt/
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Fig. 1: Overview of the three-stage data processing pipeline.

B. Audio-Language Datasets

Compared with flourishing research on VL multimodal
learning, research on audio-language multimodal learning is
limited due to the lack of AL datasets. Almost all AL tasks,
such as automated audio captioning [11], [48], [49], language-
based audio retrieval [9], [10], text-to-audio generation [16],
[17] and language-queried sound separation [20], rely on
human-annotated audio captioning datasets, AudioCaps [37]
and Clotho [44], [50]. Collecting human-annotated datasets
is expensive and time-consuming, necessitating meticulously
planned collection processes, such as determining the in-
formation to be made available to human annotators (e.g.,
visual aids), and careful post-processing to ensure their qual-
ity and accuracy. AudioCaps is the largest human-annotated
audio captioning dataset, containing about 50k audio clips
sourced from AudioSet [1], the largest audio event dataset.
The training set of AudioCaps has one human-annotated
caption per audio clip, while the validation and test sets
have five human-annotated captions per audio clip. Clotho
contains around 6k audio clips sourced from the FreeSound
platform, each audio clip has five human-annotated captions.
Although other human-annotated audio captioning datasets
have been proposed, such as MACS [45] and AudioCaption
[51], they are still limited in size and not widely used due
to their inferior quality compared to AudioCaps and Clotho.
The methodologies and post-processing procedures of these
human-annotated datasets vary significantly. For more detailed
information about these datasets, we recommend readers to
refer to the respective papers. The insufficient size of these
human-annotated audio-language datasets poses a significant
obstacle to AL research.

Other audio researchers have also tried to harvest audio
clips and their descriptions from the web. Koepke et al. [9]
introduced SoundDescs dataset, which is sourced from BBC
Sound Effects archive. Soham et al. [52] crawled 5k audio

clips and their descriptions from two sources on the web
and released WavText5K for language-based audio retrieval
task. Wu et al. [53] introduced LAION-Audio-630K, the
largest audio-language dataset to date, by crawling audio and
descriptions from multiple sources, where most of the audio
clips come from Freesound. In addition, Wu et al. investigated
to employ T5 [54], a pre-trained large language model, to
generate captions based on ground truth tags of audio clips
in AudioSet. Much like LAION-Audio-630K, the majority
of the data included in our WavCaps dataset also originates
from Freesound. There are two main differences between
our work and other online-harvested AL datasets. First, raw
descriptions harvested from the web are very noisy. Existing
harvested AL datasets did not filter or process these raw
descriptions. Instead, we utilized ChatGPT to sift through
and rephrase the unprocessed descriptions into sentences that
resemble captions, making our WavCaps dataset suitable for
all kinds of audio-language tasks including automated audio
captioning. Second, classes in AudioSet are very unbalanced
and most of the audio clips only have a single label [55],
therefore, using T5 to transform tags to captions makes the
training data unbalanced and noisy. We propose to create
captions for the subset of AudioSet [56] that contains precise
timing information for sound events, as labeled by humans.

Since the release of our WavCaps dataset in March 2023,
our methodology has inspired a variety of subsequent research
works and WavCaps has been used to train diverse audio-
language models. These include the creation of new datasets
[57]–[59], the development of text-to-audio generation mod-
els [60]–[62], and the advancement of large audio language
models [63]–[65]. This breadth of research demonstrates the
significant impact and ongoing relevance of our work in the
evolving field of audio-language multimodal learning.
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TABLE I: Example prompts to ChatGPT for FreeSound and AudioSet strongly-labelled subset. Transformation examples are
are ignored. ‘SL’ refers to ‘strongly-labelled’.

Data sources Prompts

FreeSound

BBC Sound Effects

SoundBible

I will give you a list of descriptions of sounds. Process each individually. Extract the type of the sound and generate an
audio caption describing the sound events. The audio caption should be less than 20 words. Delete the author of the sound.
Delete locations, city names, country names. Delete the time. Delete device names. Delete the proper noun modifiers, number
modifiers, and unit modifiers. Summarize each output into one sentence. Replace all named entities with their hypernyms.
Replace people names with “someone”.
Do not write introductions or explanations. Only describe the sound events and do not use “heard”, “recorded”. Start each
output sentence with its index. Make sure you are using grammatical subject-verb-object sentences. Output “Failure.” if the
description is not related to sound.

AudioSet SL

I will give you a number of lists containing sound events occurred sequentially in time. Process each individually. Write an
one-sentence audio caption to describe these sounds.
Make sure you are using grammatical subject-verb-object sentences. Directly describe the sounds and avoid using the word
“heard”. The caption should be less than 20 words.

III. WAVCAPS DATASET

In this section, we introduce the collection and processing
steps of the WavCaps dataset. Firstly, we provide an introduc-
tion to the data sources and their respective characteristics. We
then describe our proposed three-stage processing pipeline,
including pre-filtering, ChatGPT-based transformation, and
post-processing. Finally, we present a detailed analysis of the
WavCaps dataset. Fig. 1 shows the overview of the three-stage
data processing pipeline.

A. Data Sources

FreeSound [66] is an online collaborative sound sharing site
started in 2005. The initial goal of FreeSound is to give
support to sound researchers and sound artists who usually
have trouble in finding royalty-free sound samples. After more
than 10 years of development, there are more than 560 000
audio clips5 uploaded by registered users, and these audio clips
cover diverse contents such as music, environmental sounds,
synthesized sound effects and even noises. When uploading
an audio clip, each user is asked to give a short description
as well as annotations of other attributes such as tags of
the sound events about the uploaded audio clip. Ideally, we
would like to use user-uploaded descriptions directly as audio
captions. However, these raw descriptions are extremely noisy.
For example, some are not related to the audio content (such
as the recording device or personal feeling), some are not
sentences but only nouns or verbs, and some are too detailed
and include many specific information such as place names
and people names. In addition, there are a large number of
repetitive descriptions uploaded by the same user when they
upload many audio clips at the same time. Due to these distinct
attributes, processing descriptions sourced from FreeSound
can prove to be extremely challenging.
BBC Sound Effects contains over 33k audio clips recorded
around the world over the past 100 years. These audio clips
contain extensive contents from the BBC Radiophonic work-
shop, the Blitz in London, BBC TV and Radio productions,
and the BBC Natural History Unit archive. The raw descrip-
tions in BBC Sound Effects begin with nouns describing the
sounding objects or acoustic scenes of the sound content, fol-
lowed by detailed descriptions. However, most of the detailed

5Including data up to the November 30th 2022.

descriptions are also not complete sentences, and some include
specific information such as recording equipment, time and
places. Although these raw descriptions are noisy and cannot
be directly used as audio captions, these raw descriptions all
describe the content of the audio clips.
SoundBible is a website for sharing free and royalty free
sound effects and audio clips. We harvested about 1500
royalty free sound effects with their raw descriptions from
SoundBible, and these audio clips also cover a wide range of
contents. Most of the raw descriptions in SoundBible are well-
written sentences describing the audio content, but some of
them still contain redundant information unrelated to the audio
content. As a result, these raw descriptions remain unsuitable
for direct use as audio captions.
AudioSet Strongly-Labelled Subset [56] is a sound event
detection dataset that is included to increase the size of our
proposed WavCaps dataset. The original AudioSet dataset
[1] contains about 2M audio clips with unbalanced, weakly-
labelled clip-level tags, and most of these audio clips only has
one single tag. To investigate whether accuracy of the classifier
trained on AudioSet is impaired by the weak labels, Shawn
et al. [56] have also made available a strongly-labelled subset
of approximately 100k audio clips from the AudioSet dataset.
This subset has been annotated by humans and includes precise
timing information for the sound events that occur within
each clip. With these strongly-labelled temporal information,
template-based methods or large language models can be
employed to generate captions for audio clips in AudioSet
strongly-labelled subset.

B. Data Processing

Online-harvested raw descriptions are very noisy and thus
cannot be directly used as captions. To address this issue,
image captioning datasets, such as CC3M, and CC12M, have
applied a series of complex filtering and transformation steps
to process raw image-description pairs, including image-based
filtering, text-based filtering, image and text-based filtering
and text transformation. The processing steps are stringent,
resulting in a significant discard rate that we cannot afford.
In order to retain as much data as possible, we propose a
three-stage processing pipeline by simplifying the filtering and
transformation steps according to the characteristics of the
harvested audio-description pairs, as shown in Figure 1.
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TABLE II: Examples of raw descriptions and ChatGPT’s outputs.

Data sources Raw descriptions ChatGPT’s output

FreeSound
This sound is of a book falling down the staircase in the Stanford University
library west stacks. A book is falling down a staircase.

After 2h and 15min. Excerpt. Failure.

BBC Sound Effects Timber & Wood - Rip saw, carpenters’ workshop. Someone is using a rip saw in a carpenter’s workshop.
Motor Car: Ford Ecsort 1300 (Automatic) - Ford Escort 1300, exterior, passing
with horn. (1300cc engine, automatic transmission.) A car is passing with its horn.

SoundBible
Tasmanian Devil growling screaming hissing. Warning sounds from a Tasmanian
Devil in Zoo. An animal is growling, screaming, and hissing.

Large Tibetan Bells ringing in a temple. Could also use for Monastery or Monks. Bells are ringing.

AudioSet SL [‘Accelerating, revving, vroom’, ‘Race car, auto racing’] A race car is accelerating and revving.
[‘Female speech, woman speaking’, ‘Whoosh, swoosh, swish’] A woman is speaking while something whooshes.

TABLE III: Statistics of harvested raw data and WavCaps dataset.

Data sources Before processing After processing
num. of audio avg. audio duration (s) avg. text length num. of audio avg. audio duration (s) avg. text length

FreeSound 567078 56.87 17.74 262300 85.98 6.77
BBC Sound Effects 33064 115.75 15.91 31201 115.04 9.67

SoundBible 1576 11.20 17.90 1232 13.12 5.87
AudioSet SL subset 108317 10.00 - 108317 10.00 9.79

WavCaps - - - 403050 67.59 7.80

Pre-Filtering. Initially, we apply minimal pre-filtering to re-
move undesirable data, such as descriptions that do not pertain
to audio content. The pre-filtering consists of audio-duration
filtering and high-frequency text filtering. For audio-duration
filtering, audio clips with a duration of less than one second
are removed. This is mainly because short audio clips might
not contain enough meaningful content and require extremely
long padding during training. We limit our high-frequency
text filtering solely to data obtained from FreeSound. This
is because the raw descriptions from BBC Sound Effects and
SoundBible are generally considered to be consistent with their
corresponding audio content, and the sound event labels in
the AudioSet strongly-labelled subset are manually annotated.
Regarding the FreeSound data, we have noticed that high-
frequency descriptions that are shared across multiple audio
clips are typically uploaded by the same user who uploads
multiple clips simultaneously. These descriptions are more
likely to be unrelated to the audio content. Therefore, we apply
high-frequency text filtering to exclude descriptions that are
shared by more than 5 audio clips. These two filtering steps
have removed about 265k data samples from FreeSound.
ChatGPT-based Transformation. In light of the previously
discussed characteristics of the raw data, we propose three fun-
damental principles that we believe are essential for effectively
converting raw metadata into audio captions:

• Use a single-sentence, accurate description of the audio’s
content using concise syntax that follows the grammatical
subject-verb-object structure;

• Avoid the use of named entities such as individual names,
locations, and recording devices, which are not related to
the audio content;

• Omit any irrelevant subjective information, like personal
emotions or opinions, that is unrelated to the sound.

Given the varied nature of raw descriptions, it is challenging
to apply conventional rule-based natural language processing
methods as in CC3M [40] or CC12M [41]. Attempting to do
so may result in a high percentage of metadata and audio clips
being discarded, comparable to that observed in CC3M.

To tackle the challenge of converting raw descriptions into
captions, we propose using ChatGPT, a powerful conver-
sational large language model trained by OpenAI6 to per-
form this task automatically. Unlike traditional large language
models such as T5 [54] used in LAION-Audio-630K [53],
ChatGPT has been shown to excel at generating human-
like responses to natural language prompts, and has garnered
widespread attention for its powerful understanding, reasoning,
and dialogue abilities. By designing prompts that account for
the characteristics of different data sources, ChatGPT can
effectively filter out sound-unrelated information and rewrite
raw descriptions in to audio caption-like sentences that meet
the requirements we proposed in prompts. This approach has
the potential to significantly reduce the discard rate of raw
descriptions and improve the quality of converted captions.
Prompts we used are shown in Table I. In order to make use of
ChatGPT’s in-context learning ability, several transformation
examples are also included in the prompts and they are differ-
ent for each data source (ignored in Table I). These examples
can significantly improve the caption quality. It is worth noting
that other advanced conversational LLMs emerged recently,
such as GPT-4 and LLaMA3 7, could also be used. In terms
of our empirical tests, however, the captions generated by
these models retain similar semantic information, despite their
variations in the choice of the words.

Table II presents examples of the raw descriptions and final
processed captions. It can be observed that ChatGPT can
transform fragmented descriptions (e.g., nouns and phrases)
into sentences, remove redundant information that is either
too specific or not related to sound, and condense lengthy
sentences into more concise captions. This capability enhances
the usability of the data and can be considered a form of data
augmentation, enriching the dataset with more coherent audio
captions. However, ChatGPT also serves as a critical quality
control measure, ensuring the relevance and accuracy of the
dataset, due to its ability to output a “Failure” message for

6https://openai.com/
7https://llama.meta.com/

https://openai.com/
https://llama.meta.com/
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Fig. 2: Comparative visualization of raw descriptions between ChatGPT-augmented captions, Figure 2a shows the Jaccard
similarity between raw descriptions and ChatGPT-augmented captions, Figure 2b presents word clouds of top 100 words in
the WavCaps dataset (top) and the entire harvested raw descriptions (bottom), stop words are ignored, and Figure 2c displays
the readability of raw descriptions and ChatGPT-augmented captions as indicated by Flesch-Kincaid grade levels.

the descriptions that are not related to audio content. This
ability, distinct from data augmentation, focuses on selectively
refining the dataset by removing irrelevant or misleading
entries, thereby enhancing the overall data quality and utility.

While ChatGPT has shown promising results in converting
raw descriptions into captions, in some cases, it may still
fail to follow the prompts to produce captions that meet our
requirements. For instance, ChatGPT may encounter difficulty
in removing numbers, names of individuals, and geographic
locations from raw descriptions. Moreover, a small percentage
of descriptions that have no relation with the audio content
may not be filtered out.
Post-Processing. To address the aforementioned cases of
incorrect processing, we implement post-processing steps to
refine the captions generated by the system. To identify erro-
neous outputs that still include numbers, geographic locations,
and individuals’ names, we utilize a pre-trained named entity
recognition model from spaCy 8. Any captions with named
entity information are then processed again by ChatGPT to
remove these details using the same prompts but different
examples. In most cases, this second round of processing
successfully removes the named entity information. However,
if post-processing still results in captions with named entity
information, we discard these captions to ensure the quality
of the final dataset. Finally, we exclude captions that are
too brief by setting a minimum length threshold of three
words. This ensures that the captions are informative and
descriptive enough to convey a meaningful description of the
audio content.

C. Dataset Analysis

Table III provides statistics for the raw data collected from
four different sources before and after processing. It can
be observed that more than half of the data samples from
FreeSound were filtered out after processing, with the majority

8https://spacy.io/models/en#en core web sm

TABLE IV: Comparative overview of main audio-language
datasets between our proposed WavCaps dataset.

Dataset Num. audios Duration (h) Text source
AudioCaps [37] 52904 144.94 Human

Clotho [44] 5929 37.00 Human
MACS [45] 3537 9.83 Human

WavText5K [52] 4072 23.20 Online raw-data
SoundDescs [9] 32979 1060.4 Online raw-data

LAION-Audio-630K [53] 633526 4325.39 Online raw-data
WavCaps 403050 7567.92 ChatGPT
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Fig. 3: Distribution of audio duration from each data source
in the WavCaps dataset. The audio clips from AudioSet are
excluded since they are all 10 seconds long.

being removed by the high-frequency text filter. Since audio
clips with a duration less than one second were excluded,
the average duration of samples from FreeSound significantly
increased. Conversely, only a small number of samples from
BBC Sound Effects and SoundBible were removed. The
dataset includes 28 678 unique words and 19 974 stemmed
words. Notably, there has been a significant decrease in the
average caption length.

Following [50], we employed Jaccard similarity to quantify
the overlap between the original raw descriptions and the
captions augmented by ChatGPT. The Jaccard similarity is

https://spacy.io/models/en##en_core_web_sm
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Fig. 4: Visualization of human validation results. (a) The distribution of Mean Opinion Score (MOS) ratings for ChatGPT-
augmented captions with 1 indicating no correspondence and 5 indicating an exact match to the audio content. (b) The
evaluators’ categorization of the similarity between ChatGPT-augmented captions and human-annotated captions: (A) nearly
identical, (B) partial coverage with omissions, and (C) significantly different. (c) The mean accuracy scores of the captions
corresponding to each of the three comparative categories between ChatGPT-augmented captions and human-annotated captions.

a metric used to gauge the similarity and diversity of sample
sets. In our analysis, the Jaccard similarity is calculated as the
proportion of the shared words to the total unique words in
both the raw description and the ChatGPT-augmented caption.
This can be formulated as:

J(A,B) =
|A ∩B|
|A ∪B|

(1)

where A is the set of words in the raw description and B
is the set of words in the ChatGPT-augmented caption. The
normalized distribution of the Jaccard similarity scores, as
presented in Figure 2a, demonstrates a generally low level of
lexical overlap across various sources. Such Jaccard similarity
scores, coupled with the observed reduction in caption length,
suggest that the ChatGPT-augmented captions have undergone
considerable transformation from the original descriptions,
often involving substantial word deletion.

Fig. 2b displays the top 100 word clouds in the WavCaps
dataset and the entire harvested raw descriptions, respectively.
The top word clouds in the WavCaps dataset contain meaning-
ful sound-related words such as sounding objects and sound
events, whereas the top word clouds in the raw descrip-
tions are largely devoid of meaning. This also demonstrates
that ChatGPT successfully extracted sound-related information
and removed information unrelated to sound. Moreover, we
utilized the Flesch-Kincaid grade level [67] to evaluate the
readability of both raw descriptions and ChatGPT-enhanced
captions, where a lower Flesch-Kincaid grade level indicates
the text is easier to read and comprehend. As depicted in
Figure 2c, the lower grade levels of the augmented captions
across all the data sources reflect that ChatGPT has simplified
the original raw descriptions. This simplification is aligned
with our prompt design shown in Section III-B, which aims
to remove audio-irrelevant information and employ concise
syntax.

Additionally, the WavCaps dataset includes 330 609 unique
captions. Among these, 311 242 captions appear only once,
showcasing a wide variety of expressions. However, there are
19 367 captions that recur in the dataset, indicating instances

where the exactly same caption (i.e., the same sequence of
words) is used more than once. It is noteworthy that captions
recurring with a frequency of more than 5 times tend to be
shorter, having an average of 4.9 words, compared to the
average length of all the captions, which have an average of
7.8 words. An informal analysis suggests that these shorter,
frequently appearing captions typically depict common and
single sound events. This trend suggests that, while there is
considerable variation in the dataset, certain sound events tend
to be described with a consistent, standardized vocabulary and
captions.

Table IV provides a comparison of key statistics between
WavCaps and other audio-language datasets. Human-labeled
datasets are generally limited in size, but the captions are
in high quality. SoundDescs [9] is sourced from the BBC
Sound Effects with no processing applied to the raw descrip-
tions. LAION-Audio-630K has the highest number of audio
clips. A majority of the audio clips in LAION-Audio-630K
(around 420k) are sourced from FreeSound, resulting in a
substantial overlap between their dataset and ours. To preserve
the diversity of clip durations, we did not exclude any long
audio clips, leading to a longer total duration in our dataset
compared to others. Fig. 3 illustrates the distribution of audio
durations in the WavCaps dataset. The AudioSet Strongly-
labeled subset is not considered in Fig. 3, as all audio clips in
AudioSet have a consistent duration of 10 seconds. Overall,
in comparison to human-labelled audio captioning datasets,
WavCaps is an order of magnitude larger and encompasses
a greater diversity of content. In contrast to online-harvested
datasets such as SoundDescs and LAION-Audio-630k, our
method entails converting raw descriptions into captions and
removing noisy or sound-unrelated descriptions. This approach
ultimately leads to the development of the most extensive
weakly-labeled audio captioning dataset that exists.

We categorize WavCaps as a large-scale pre-training re-
source and have not divided it into subsets, in a similar way
to the practice adopted in CC12M [41], or VideoCC 3M
[68], for the reason that the dataset is collected from diverse
sources and the captions are weakly-labelled. It is important
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to note that if the original meta descriptions do not capture a
particular aspect of the audio events or even do not accurately
describe the audio content, the resulting captions tend to reflect
these limitations, as we only processed the text metadata, but
not the audio data. In addition, high-quality audio captions
may include spatial-temporal information about sound events,
as observed in some human-annotated captions in datasets
like Clotho and AudioCaps [37], [44]. Such information can
enhance the contextual understanding of the soundscapes.
However, spatial-temporal details are generally absent in our
harvested descriptions, particularly those sourced from three
web sources. Given that spatial-temporal information is not a
perquisite for effective audio captions, its omission aligns with
our design principles. Consequently, our captions primarily
lack spatial-temporal details, focusing instead on the coarse-
grained descriptions of audio clips. Notably, the captions from
AudioSet strongly-labelled subset might include temporal re-
lationships, as these audio tags are provided to ChatGPT in
sequence, based on their occurrence in time. In a future study,
it would be interesting to further improve the granularity of the
captions with the spatiotemporal information of the acoustic
events.

D. Human Validation

To ensure the robustness of our methodology, we incorpo-
rated a human validation process for a subset of the WavCaps
dataset. We randomly selected 160 samples from FreeSound,
which are also included in the test set of Clotho. We recruited
eight evaluators and engaged them in a two-stage process:
initially, they were asked to listen to the audio samples and
assessed the accuracy of the ChatGPT-augmented captions.
The evaluators rated each caption on a Mean Opinion Score
(MOS) scale from 1 to 5, where 1 means that the caption fails
to correctly describe the audio clip at all, and 5 indicates a per-
fect description of the audio clip without errors. Subsequently,
for the comparison phase, the evaluators were instructed to
conduct a comparison of the ChatGPT-augmented captions
against the human-annotated captions from the Clotho dataset.
They were instructed to categorize the relationship between the
two sets of captions from three options, (A) nearly identical in
content, (B) ChatGPT-augmented captions partially covering
the sound events as the Clotho annotations but omitting certain
details or sound events, and (C) significantly different in
content and detail. This comparative analysis was critical in
identifying the relative accuracy and descriptive quality of the
ChatGPT-augmented captions compared to human annotation
standards. In the entire evaluation process, captions were la-
beled as “Caption A” and “Caption B” to ensure that evaluators
remained unaware of each caption’s origin, whether ChatGPT-
augmented or human-annotated.

The human validation results are shown in Figure 4. The
mean accuracy score obtained for ChatGPT augmented cap-
tions was 3.89, indicating a high level of precision in the
ChatGPT-augmented captions. Notably, more than 40% of the
evaluated captions received a perfect score of 5, indicating that
the majority of the ChatGPT-augmented captions accurately
describe the audio events. However, there were instances of

lower scores, which underscores the rationale for labeling this
dataset as weakly-labeled. As the captions are augmented from
the raw descriptions, and if the raw descriptions do not cover
all of the sound events, the augmented captions tend to miss
such sound events too. In terms of the comparison options,
the majority of evaluators selected option (B), suggesting that
the ChatGPT-augmented captions usually missed some sound
events or lacked the specificity found in human-annotated
captions. This outcome is aligned with the initial intent of our
prompt design, which intentionally discards specific details
and generates more general captions. For option (C), which
indicated a significant difference in content and detail, the
mean accuracy score was 3.17. If we regard the human-
annotated captions as ground-truth, the mean accuracy score
for option (C) is expected to be as low as possible. This dis-
crepancy can partially be attributed to the annotation process
used for Clotho dataset [44], [50], where annotators had access
solely to audio without contextual information, leading to
possible interpretations of the same sound as different events.
In conclusion, the human validation results affirm the overall
quality of our dataset. The results highlight the efficacy of the
ChatGPT-augmented captions that are generally accurate but
could miss some details or sound events.

IV. EXPERIMENTS

To evaluate the impact of the proposed WavCaps dataset, we
conducted experiments on several audio-language multimodal
learning tasks, including audio-language retrieval, automated
audio captioning, zero-shot audio classification, and text-to-
sound generation. In this section, we provide a description
of the AL tasks we considered, along with the correspond-
ing experimental settings, results and analysis. For all the
experiments excluding text-to-sound generation, audio clips
are sampled with a 32k Hz sampling rate, and we use 64-
dimensional log mel-spectrograms extracted by a 1024-point
Hanning window with a hop size of 320 samples as input
audio features.

A. Audio-Language Retrieval

Audio-language retrieval involves searching for an audio
clip or a caption in a database based on a query from another
modality. To perform this task, the model learns Acoustic
Semantic Embeddings (ASE) [10] that map paired audio clips
and captions closer in the embedding space, while keeping
embeddings for non-paired audio clips and captions far apart.
We evaluate audio-language retrieval under three training
settings: zero-shot, pretraining, and fine-tuning.

1) Models: Following previous works [10], [53], we build
an ASE model based on a two-tower architecture, where an
audio encoder is employed to encode audio representations
while an language encoder is used to encode captions. Two
types of audio encoders, a CNN14 from pretrained audio
neural networks (PANNs) [55] and a Transformer network-
HTSAT [70] are considered, which are both pretrained on
AudioSet with an audio tagging task. A pretrained BERT-
base network [71] is employed as the language encoder. A 2-
layer multilayer perceptron with a ReLU activation in between
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TABLE V: Experimental results of audio-language retrieval on test sets of AudioCaps and Clotho. “AC” refers to “AudioCaps”,
“LA” refers to “LAION-Audio-630K”, “ZS” refers to “zero-shot”, “PT” refers to “pretraining”, and “FT” refers to “fine-tuning”.
Higher score means better performance.

Model Training Dataset
AudioCaps Clotho

Text-to-Audio Audio-to-Text Text-to-Audio Audio-to-Text
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MMT [9] AC or Clotho 36.1 72.0 84.5 39.6 76.8 86.7 6.7 21.6 33.2 7.0 22.7 34.6
ML-ASE [10] AC or Clotho 33.9 69.7 82.6 39.4 72.0 83.9 14.4 36.6 49.9 16.2 37.6 50.2

TAP [69] AC or Clotho 36.1 72.0 85.2 41.3 75.5 86.1 16.2 39.2 50.8 17.6 39.6 51.4
CLAP-HTSAT [52] AC+Clotho+WavText5K 34.6 70.2 82.0 41.9 73.1 84.6 16.7 41.1 54.1 20.0 44.9 58.7

LAION [53] AC+Clotho 36.7 70.9 83.2 45.3 78.0 87.7 12.0 31.6 43.9 15.7 36.9 51.3
LAION [53] AC+Clotho+LA 32.7 68.0 81.2 43.9 77.7 87.6 15.6 38.6 52.3 23.7 48.9 59.9
LAION [53] AC+Clotho+LA+AudioSet 36.1 71.8 83.9 46.8 82.9 90.7 16.1 38.3 51.1 22.7 48.5 60.8

LAION (fusion) [53] AC+Clotho+LA+AudioSet 35.1 71.5 83.6 45.8 80.9 91.6 18.2 42.5 54.4 25.7 51.5 63.4
HTSAT-BERT-ZS LA 14.4 39.4 53.9 15.3 40.1 56.2 13.8 35.5 47.4 15.8 39.7 51.8
HTSAT-BERT-PT AC+Clotho+LA 34.2 69.6 83.3 41.9 76.2 85.5 17.4 43.0 56.0 23.9 46.4 61.3

CNN14-BERT AC+Clotho 30.3 66.1 79.7 36.7 70.6 83.0 15.6 39.7 52.6 19.9 41.2 55.9
CNN14-BERT-ZS WavCaps 25.4 58.2 73.2 32.4 63.6 77.1 17.5 41.7 54.9 21.7 45.7 57.6
CNN14-BERT-PT AC+Clotho+WavCaps 34.7 69.1 82.5 44.6 76.3 86.2 21.2 46.4 59.4 25.9 52.6 65.8
CNN14-BERT-FT AC+Clotho+WavCaps 35.1 70.0 82.1 45.7 76.1 87.7 21.5 47.9 61.9 27.1 52.7 66.3

HTSAT-BERT AC+Clotho 39.2 74.9 86.5 49.5 81.9 91.5 15.6 38.4 52.0 21.0 43.8 55.7
HTSAT-BERT-ZS WavCaps 28.6 61.1 75.8 40.2 69.4 80.3 16.5 38.8 50.9 20.0 43.3 56.6
HTSAT-BERT-PT AC+Clotho+WavCaps 39.7 74.5 86.1 51.7 82.3 90.6 19.5 45.2 58.2 23.4 50.9 63.4
HTSAT-BERT-FT AC+Clotho+WavCaps 42.2 76.5 87.1 54.6 85.2 92.4 19.7 45.7 59.4 26.9 52.6 64.9

is appended after these two encoders to project respective
features into the shared embedding space. Cosine similarity
is used to quantify the similarity between audio embeddings
and language embeddings, and can be formulated as

sij =
f(ai) · g(tj)

||f(ai)||2||g(tj)||2
(2)

where f(·) is the audio encoder and g(·) is the language
decoder, ai is the audio clip indexed with i in a batch, tj is
the caption indexed with j in a batch, and sij is the similarity
score. The model is trained with a normalized temperature-
scaled cross entropy loss (NT-Xent) [72] in a bi-directional
manner, and can be formulated as:

L = − 1

2B

B∑
i=1

log
exp(sii/τ)∑B

j=1 exp (sij/τ)
+

log
exp(sii/τ)∑B

j=1 exp (sji/τ)

(3)

where B is the batch size, and τ is a temperature hyper-
parameter. This training strategy is also known as contrastive
language-audio pretraining (CLAP) [73].

2) Experimental Setup: We first train our two models on
the merged training sets of AudioCaps and Clotho as baselines.
For the zero-shot setting, we exclude all overlapping samples
in AudioCaps and Clotho from the WavCaps dataset. We
provide IDs of overlapping samples with the release of the
dataset9. The baseline and zero-shot models are trained for
15 epochs with a batch size of 128 and a learning rate of
5 × 10−5 using the Adam [74] optimizer. For the supervised
setting, we merge WavCaps, AudioCaps and Clotho together
as a large training set (validation and test sets of AudioCaps
and Clotho are not included). The models are trained for 40
epochs and other hyperparameters are the same as in zero-shot
settings. For the fine-tuned setting, we aim to study the impact
of pretraining on WavCaps dataset. We further fine-tune the

9https://huggingface.co/datasets/cvssp/WavCaps/tree/main/json files/
blacklist

models trained under pretraining setting on AudioCaps and
Clotho for 20 epochs, respectively. The temperature hyperpa-
rameter τ is set to 0.07 for all settings. For the HTSAT audio
encoder, all the audio clips are randomly cropped or padded
to 10 seconds, because HTSAT requires fixed-sized inputs.
For the CNN14 audio encoder that can receive variable length
inputs, we set the maximum input duration as 30 seconds
and audio clips longer than 30 seconds are randomly cropped.
During training, audio clips with similar duration are grouped
within a batch. Model checkpoints are selected based on their
performance on validation sets after each epoch and the final
model performance is evaluated on the test sets of AudioCaps
and Clotho using recall at rank k (R@k). For a query, R@k
is 1 if the positive item appears in the top k retrieved items,
otherwise 0. The final R@k is averaged across the dataset.

3) Results and Analysis: Table V presents the audio-
language retrieval results on the AudioCaps and Clotho
datasets, where top half of the table shows the results of
existing methods and bottom half of the table shows our
results. In the zero-shot setting, both of our models show
strong ability for zero-shot retrieval. When compared with
previous SOTA models that were trained only on respective
datasets, both models outperform the previous SOTA models
on the Clotho dataset and achieve comparable results on the
AudioCaps dataset. This demonstrates that the models trained
on WavCaps in zero-shot setting generalize well on both
AudioCaps and Clotho datasets. In the pretraining setting, the
performance is improved compared to baselines and zero-shot
models, and also achieved SOTA results on both datasets. It
can be observed that using more training data leads to greater
improvement on audio-to-text metrics compared to text-to-
audio metrics. With fine-tuning, both of our models further
improve the performance, and outperform all existing methods
by a significant margin on both audio-to-text retrieval (16.7%
improvement on R@1 on AudioCaps and 5.4% improvement
on R@1 on Clotho) and text-to-audio retrieval (15.0% im-
provement on R@1 on AudioCaps and 18.1% improvement
on R@1 on Clotho).

In order to demonstrate the effectiveness of our proposed

https://huggingface.co/datasets/cvssp/WavCaps/tree/main/json_files/blacklist
https://huggingface.co/datasets/cvssp/WavCaps/tree/main/json_files/blacklist


10

WavCaps dataset, we primarily compare our results with
models trained on the LAION-Audio-630K dataset [53]. For
LAION’s models, we observe a notable decline in performance
on the AudioCaps dataset when the LAION-Audio-630K
dataset is added to the training, while there is an improve-
ment in results for the Clotho dataset. After incorporating
AudioSet into the training, LAION’s model demonstrates
improved performance on AudioCaps, but remains close to
their baseline. In our case, our models outperform LAION’s
models in most metrics for both datasets, despite utilizing
less data. When incorporating WavCaps into the training, our
models exhibit significant improvements on both datasets. It
is important to highlight that LAION’s training set, which
includes AudioSet, is approximately six times larger than
ours, totaling 2.63 million in size. Due to the differences in
the architecture between our model and LAION’s model, we
trained our HTSAT-BERT model on the LAION-Audio-630K
dataset under both zero-shot and pretraining settings. This
approach ensures a fair comparison by maintaining consis-
tency in all training parameters, with the only variation being
the dataset used. The LAION-Audio-630K dataset we used
contains 594 404 audio clips, which is slightly smaller than
the official dataset since we do not have access to some of
the audio clips. The comparison between the official LAION-
Audio-630K dataset and our version is shown in Appendix A.
It can be observed that the models trained on WavCaps greatly
outperform those trained on LAION-Audio-630K under both
training settings. Our experimental results reveal that the
quality of the audio-language dataset significantly influences
the model performance. By adopting our proposed three-stage
processing pipeline to filter out noisy data and rewrite raw
descriptions into captions, we achieve SOTA performance
using a smaller quantity of higher-quality data.

Finally, our two models show varying performance levels on
the AudioCaps and Clotho datasets. The CNN14-based model
underperforms the HTSAT-based model on the AudioCaps
dataset, yet it surpasses the HTSAT-based model on the Clotho
dataset. A potential explanation for this could be the variable
duration of audio clips in Clotho, which range from 15 to 30
seconds. Randomly cropping these clips into 10 seconds in the
HTSAT model may result in information loss. As CNN14 is
capable of handling variable duration, it outperforms HTSAT
on the Clotho dataset. We believe that the performance of our
models could be further improved by employing feature fusion
methods, as seen in [53], to process variable-duration audio
clips. However, we plan to explore this in future work.

B. Automated Audio Captioning

Automated audio captioning is the task of generating a
natural language sentence to describe the content of an audio
clip, which mainly concerns environmental sounds and ignores
possible voice content [11]. We continue to evaluate audio
captioning on AudioCaps and Clotho datasets.

1) Models: Audio captioning is generally solved by an
encoder-decoder model, where an encoder is leveraged to
extract audio features and a decoder is employed to generate
captions based on audio features extracted from the encoder.

We build our model based on the baseline of Detection and
Classification of Acoustic Scenes and Events (DCASE) 2022
challenge task 6 [12]. Similar to the audio-language retrieval
approach mentioned earlier, we explore two types of audio
encoders, namely, a CNN14 and an HTSAT, for our audio
captioning models. The language decoder is a pretrained lan-
guage model, BART based network [82]. BART is a sequence-
to-sequence language model consisting of both Transformer
encoder and decoder blocks, pretrained on large text corpora.
The model is trained with a cross-entropy loss and can be
formulated as:

LCE(θ) = − 1

T

T∑
t=1

log p(yt|y1:t−1, x, θ) (4)

where x is an input audio clip, yt is the t-th ground truth token
in a sentence whose length is T , and θ are the parameters of
the audio captioning model.

2) Experimental Setup: We first explored a zero-shot train-
ing setting, where all overlapping samples from the Clotho
and AudioCaps datasets are excluded for training. Then, we
adopt a two-stage training paradigm similar to the fine-tuning
setting in audio-language retrieval. The whole model is first
pretrained on WavCaps, together with the training sets from
Clotho and AudioCaps, using a learning rate of 5× 10−5 and
a batch size of 48 for 15 epochs. The pretrained model is
further fine-tuned on AudioCaps and Clotho for 20 epochs
with a learning rate of 5 × 10−6, respectively. During the
whole training process, we ensure that no data from validation
or test sets of Clotho and AudioCaps are used for training. To
assess the impact of pretraining using WavCaps dataset, we
train the two models exclusively on AudioCaps and Clotho
as baselines. The performance is evaluated using conventional
metrics including BLEUn [83], ROGUEl [84], METEOR [85],
CIDEr [86], SPICE [87], and SPIDEr [88], where SPIDEr is
generally employed as the main metric in the literature.

3) Results and Analysis: Results are presented in Table VI.
In the zero-shot training scenario, both models demonstrate
robust zero-shot capabilities, affirming the suitability of our
dataset for the audio captioning task. The fine-tuning results
further demonstrate that our models surpass existing methods,
achieving new SOTA performance on the Clotho and Au-
dioCaps datasets. Notably, our model outperforms even those
methods that incorporate the validation set into their training
for the Clotho dataset. Compared to the baseline systems,
pretraining on WavCaps leads to a significant improvement
in the final performance on both datasets. These outcomes
suggest that ChatGPT effectively transforms raw descriptions
into caption-like sentences, thereby boosting audio captioning
performance. In alignment with findings from audio-language
retrieval above, the CNN14 audio encoder outperforms the
HTSAT audio encoder on the Clotho dataset but exhibits
inferior performance on the AudioCaps dataset.

C. Zero-Shot Audio Classification

Audio classification aims at classifying the class of the
sound presented in an audio clip. We carry out zero-shot audio
classification on three popular audio event datasets to evaluate
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TABLE VI: Automated audio captioning results on the test sets of AudioCaps and Clotho. A higher score means better
performance. “*” indicates that the validation set of Clotho is used to train the model.

Dataset Model BLEU1 BLEU4 ROUGEl METEOR CIDEr SPICE SPIDEr

Clotho

Prefix [75] 56.0 16.0 37.8 17.0 39.2 11.8 25.5
MAAC [76] 57.5 17.4 37.7 17.4 41.9 11.9 26.9
Netease [77] 58.3 17.7 38.8 17.9 45.6 12.8 29.2

FeatureCut [78] 60.1 17.9 38.9 17.6 43.6 12.2 27.9
CLIP-AAC* [79] 57.2 16.9 37.9 17.1 40.7 11.9 26.3

Netease* [77] 58.5 18.2 40.0 18.4 47.4 13.5 30.2
CNN14-BART (zero-shot) 29.9 7.2 29.3 12.0 24.8 8.7 16.7
CNN14-BART (baseline) 56.0 16.0 37.0 17.1 39.3 11.7 25.5

CNN14-BART 60.1 18.0 40.0 18.5 48.8 13.3 31.0
HTSAT-BART (zero-shot) 36.2 7.8 30.0 12.4 25.0 8.6 16.8
HTSAT-BART (baseline) 57.6 16.4 38.2 17.5 41.5 11.9 26.7

HTSAT-BART 58.5 16.8 38.3 18.4 46.2 13.3 29.7

AudioCaps

ACT [48] 64.7 25.2 46.8 22.2 67.9 16.0 42.0
V-ACT [80] 69.8 28.1 49.4 23.7 71.1 17.2 44.2
Prefix [75] 71.3 30.9 50.3 24.0 73.3 17.7 45.5

BART-tags [12] 69.9 26.6 49.3 24.1 75.3 17.6 46.5
AL-MixGEN [81] 70.0 28.9 50.2 24.2 76.9 18.1 47.5

CNN14-BART (zero-shot) 55.1 12.4 37.1 18.6 45.3 11.9 28.6
CNN14-BART (baseline) 67.0 26.1 48.3 23.1 72.1 16.9 44.5

CNN14-BART 69.3 27.2 49.9 24.7 75.6 17.9 46.8
HTSAT-BART (zero-shot) 51.3 11.0 37.8 20.4 39.3 13.8 26.7
HTSAT-BART (baseline) 67.5 27.2 48.3 23.7 71.1 17.7 44.4

HTSAT-BART 70.7 28.3 50.7 25.0 78.7 18.2 48.5

the generalization and robustness of models trained on our
WavCaps dataset.

1) Models: We formulate the audio classification task as
an audio-language retrieval problem, following the approach as
used in CLIP [35]. Initially, we encode all class labels as class
embeddings using a text encoder without using any prompts.
Each audio clip will be encoded by the audio encoder and then
compared with the class embeddings to get a similarity score
for each class. Those similarity scores will be normalized to
get a final probability distribution over the classes. We use
‘HTSAT-BERT-PT’ model described in Section IV-A.

2) Experimental Setup: WavCaps and the training sets of
AudioCaps and Clotho are merged as a training set, where
overlapping samples co-occurred in the evaluation datasets are
excluded. The training settings are same as those in audio-
language retrieval. Three audio event datasets, ESC-50 [2],
UrbanSound8K [89], and VGGSound [90] are employed. ESC-
50 is an environmental sound classification dataset consisting
of 2000 5-seconds audio clips annotated with 50 classes.
UrbanSound8K contains 8732 audio clips less or equal to 4
seconds of urban sounds from 10 classes. VGGSound contains
about 200k audio clips for 310 classes sourced from YouTube
videos. ESC-50 and UrbanSound8K are officially split into 5-
folds and 10-folds for cross-validation. Therefore, we use all
audio clips in ESC-50 and UrbanSound8K, and the test set
of VGGSound for evaluation. Top-1 accuracy is used as the
evaluation metric.

3) Results and Analysis: Table VII presents the results,
with the top row showing the supervised SOTA performance
on each dataset, while the remaining rows show zero-shot
results. Compared to our model, LAION and BLAT [95] both
use more data to train their models. Our models achieved
SOTA zero-shot results on all three datasets, significantly
outperforming other models on ESC-50 and UrbanSound8K.
In the case of VGGSound, Wu et al. [53] (LAION) reported a
46.2% accuracy, but their use of AudioSet for model training

TABLE VII: Results of the top-1 accuracy on zero-shot audio
classification.

Model ESC-50 UrbanSound8K VGGSound
Supervised SOTA 98.1 [91] 90.0 [92] 75.4 [53]
Wav2CLIP [93] 41.4 40.4 10.0
AudioCLIP [94] 69.4 65.3 -

CLAP [73] 82.6 73.2 -
BLAT [95] 80.6 77.3 14.9

LAION [53] 91.0 77.0 29.1 (46.2)
Ours 94.8 80.6 29.6

without excluding overlapping samples between AudioSet and
VGGSound led to a data leakage issue. Overall, in comparison
with LAION and BLAT, our approach yielded superior results
using less data, which highlights the effectiveness of our
proposed WavCaps dataset.

The zero-shot results we obtained were close to the super-
vised SOTA on ESC-50 and UrbanSound8K, but exhibited a
considerable margin on the VGGSound dataset. ESC-50 and
UrbanSound8K datasets are composed of 50 and 10 classes,
respectively, while VGGSound dataset includes 310 classes.
However, the level of granularity in VGGSound’s classification
scheme may be too high, which could lead to models trained
on WavCaps struggling to generalize effectively across all 310
classes.

D. Text-based Sound Generation

Text-based sound generation is a task that generates sound,
including speech, music, and sound effect, with textual infor-
mation [17]. We follow previous studies [16]–[18] and perform
training and evaluation on the AudioCaps [37] dataset.

1) Models: AudioLDM [17] is a text-to-sound genera-
tion model that builds upon contrastive language-audio pre-
trained (CLAP) encoders. When trained effectively, the CLAP
encoders have the capability to capture the relationships be-
tween different modalities and ease the training challenges of
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TABLE VIII: Performance comparison on Text-based sound
generation. AudioGen is marked with† because the pretrained
model and the evaluation data of AudioGen are not open-
sourced, which may lead to unreliable comparison.

Model Train Condition FAD ↓ IS ↑ KL ↓ FD ↓
DiffSound [18] - 7.75 4.01 2.52 47.68
AudioGen-base† [16] - 3.13 - 2.09 -

AudioLDMLAION [17] Audio 2.98 7.12 2.2 24.04
Text 2.47 6.91 2.25 24.84

AudioLDMWavCaps
Audio 2.85 5.42 2.31 24.89
Text 2.29 7.05 2.3 26.3

AudioLDMWavCaps-FT
Audio 2.98 5.79 2.17 21.9
Text 2.58 6.38 2.23 25.27

audio generative models. The original AudioLDM, denoted by
AudioLDMLAION, adopts a CLAP model developed by [53]
with a dataset of around 2.6 million audio-text pairs. We re-
implement AudioLDM with a CLAP model trained with our
proposed WavCaps, denoted by AudioLDMWavCaps. We further
finetuned our CLAP model on AudioCaps training set for text-
to-sound generation, denoted by AudioLDMWavCaps-FT. Specif-
ically, we use the pretrained Variational Autoencoder (VAE)
and vocoder in the open-source implementation of Audi-
oLDM10 and trained a new latent diffusion model (LDM). The
LDM in AudioLDM is trained with the re-weighted training
objective [96], given by

Ln(θ) = Ez0,ϵ,n ∥ϵ− ϵθ(zn, n,E
x)∥22 , (5)

q(zn|z0) = N (zn;
√
ᾱnz0, (1− ᾱn)ϵ), (6)

where ϵ ∼ N (0, I) denotes the standard Gaussian noise, ᾱn is
the noise schedule [17], z0 is the original VAE latent extracted
from audio, and zn is the output of the n-th forward diffusion
step. To benchmark our models, we also included two state-of-
the-art audio generation models, namely DiffSound [18] and
AudioGen [16].

2) Experimental Setup: The training and testing set split of
AudioCaps are the same as the Audio Captioning experiments
in Section IV-B. The LDM is optimized on the AudioCaps
training set by an Adam optimizer with a learning rate of
3 × 10−5. We adopt a batch size of 8 and train LDM for
a total of 400k steps. We evaluate the performance on the
AudioCaps test set at intervals of 50k training steps and
choose the outcome with the most optimal Frechet Audio
Distance (FAD) as the final result for reporting purposes. The
training data from AudioCaps are resampled to 16kHz before
the model training. The setting on spectrogram calculation
follows exactly the setting of [17]. Regarding the AudioLDM-
based models, we conduct experiments with two distinct
modalities as training conditions: audio embedding and text
embedding obtained from CLAP. When conditioned on audio,
the model undergoes self-supervised training for audio genera-
tion, whereas conditioning on text involves supervised training
using paired audio-text data.

In accordance with [17] and their methodology, we assess
the performance of our models using a range of metrics,
including the FAD, Inception Score (IS), KL divergence (KL),
and PANNS-based Frechet Distance (FD). The FAD and FD

10https://github.com/haoheliu/AudioLDM

metrics evaluate the similarity between two audio data distri-
butions, while IS measures the diversity of the generated audio
data and its similarity to the target audio data distribution.
Additionally, KL provides a sample-level measure of similarity
between generated and target samples.

3) Results and Analysis: Table VIII shows the evaluation
result of AudioLDM paired with different CLAP models as
well as the baseline methods. Even with a much smaller
dataset size (15%) compared with AudioLDMLAION, our
AudioLDMWavCaps still achieves a comparable performance.
AudioLDMWavCaps even performs better on FAD and the
inception score when we use text as training embedding,
indicating our dataset has better text labelling quality. When
our CLAP model is finetuned on AudioCaps, KL and FD by
AudioLDMWavCaps-FT is improved significantly, which are even
better than the KL and FD of AudioLDMLAION. Nevertheless,
our model does not perform well on IS when conditioned
on audio embedding. One possible explanation for this is
that the scale of our training data is relatively small, which
could restrict the model’s ability to generalize. However, we
can address this issue by augmenting the CLAP training data
with label-to-caption augmented audioset data. Compared with
the baseline methods, all our implementation of AudioLDM
outperforms DiffSound and FAD of AudioGen by a large
margin.

E. Ablation Study

We carried out ablation studies to evaluate the effectiveness
of each component in our processing pipeline. Recognizing
that both step 2 (ChatGPT-based Transformation) and step 3
(Post-Processing) include caption refinement using ChatGPT,
we merged these steps in our analysis. This approach enabled
a direct comparison between the efficacy of the original
raw descriptions and the ChatGPT-augmented captions. We
specifically selected the FreeSound subset for our in-depth
study, considering its notable complexity, and the fact that the
first step of our pipeline primarily focuses on filtering data
from FreeSound.

Table IX presents the experimental results of zero-shot audio
language retrieval. The model used is ‘HTSAT-BERT’ and
the training settings are the same as those in the zero-shot
setting in Section IV-A. Because we only used the FreeSound
subset, the number of training samples is 561 124 and 257 040
before and after the 1st step of processing, respectively. It
can be observed that all scores are improved after applying
pre-filtering with less than half of the data. After the 3rd
step, where the raw descriptions are augmented to captions
by ChatGPT, slight improvements can be observed across all
scores. When including data from other resources, all the
scores are further improved, especially on AudioCaps.

The impact of caption refinement using ChatGPT in the
audio-language retrieval task was relatively modest. Our pri-
mary motivation was to enhance raw descriptions into more
comprehensive audio captions. To validate this approach, we
conducted zero-shot automated audio captioning experiments.
We trained the ‘CNN14-BART’ model separately with the
raw descriptions and the ChatGPT-augmented captions, using

https://github.com/haoheliu/AudioLDM
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TABLE IX: Ablation study results of zero-shot audio-language retrieval on the test sets of AudioCaps and Clotho.

Settings
AudioCaps Clotho

Text-to-Audio Audio-to-Text Text-to-Audio Audio-to-Text
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Before 1st step (FreeSound subset) 12.9 37.0 51.8 13.8 38.2 55.1 12.5 36.2 46.9 15.4 36.8 48.3
After 1st step (FreeSound subset) 15.6 43.2 59.6 19.4 46.8 62.8 14.3 36.8 49.4 16.5 39.0 52.3
After 3rd step (FreeSound subset) 17.3 46.3 61.8 20.9 49.1 64.7 14.8 37.6 51.1 17.0 39.8 52.7

WavCaps 28.6 61.1 75.8 40.2 69.4 80.3 16.5 38.8 50.9 20.0 43.3 56.6

TABLE X: Ablation study results of zero-shot automated audio captioning on the test sets of AudioCaps and Clotho.

Settings Dataset BLEU1 BLEU4 ROUGEl METEOR CIDEr SPICE SPIDEr
After 1st step (FreeSound subset) Clotho 34.9 3.9 25.0 10.3 16.7 5.7 11.2
After 3rd step (FreeSound subset) 34.6 8.3 31.4 12.7 27.2 9.0 18.1
After 1st step (FreeSound subset) AudioCaps 30.5 3.0 24.6 10.7 21.2 5.8 13.5
After 3rd step (FreeSound subset) 34.0 6.8 30.0 12.1 36.2 7.7 22.0

the FreeSound subset of the WavCaps dataset. Notably, the
FreeSound subset, after the filtering of 1st processing step,
comprised 257 040 training samples. Table X shows the results
of the ablation study for automated audio captioning. We can
observe significant improvements after using the ChatGPT-
augmented captions, where the SPIDEr score was improved
by 6.9% on the Clotho dataset and by 8.5% on the Audio-
Caps dataset. This proves the effectiveness of the proposed
ChatGPT-based caption refinement and the suitability of the
WavCaps dataset for the audio captioning task.

V. CONCLUSION

Data scarcity presents a significant challenge in audio-
language multimodal learning research. In this study, we
have introduced WavCaps, a large-scale weakly-labelled au-
dio captioning dataset, created by collecting audio clips and
their corresponding raw descriptions from the web. A three-
stage processing pipeline is proposed to filter and transform
crawled raw descriptions into captions using ChatGPT. Our
evaluation of the WavCaps dataset on multiple audio-language
multimodal learning tasks resulted in new state-of-the-art per-
formance across all tasks. Our aspiration is that WavCaps can
not only facilitate the progress of audio-language multimodal
learning research but also showcase how ChatGPT-like LLMs
can be utilized to enrich academic research.
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